What is the Role of Cybersecurity in your Enterprise?
June 24, 2021 by Team Brinqa

What does cybersecurity mean to your business? This might seem like an odd question, but how an enterprise responds to it can say a lot about the culture and practice of cybersecurity within that organization. There are many different ways to ask the same question — Which function does cybersecurity report to within the enterprise? Who are the internal clients of cybersecurity? Does cybersecurity leadership have a voice at the highest levels of corporate decision-making?


There are two main schools of thought about the role and orientation of cybersecurity within the enterprise. The traditional school places cybersecurity within the information technology (IT) function of a business. In this model cybersecurity reports to IT, IT is the internal client for cybersecurity, and the CISO might report up to the CTO or CIO.


It’s easy to see why one might make this association. IT and cybersecurity professionals often have similar or adjacent skillsets and overlapping educational and professional backgrounds. Both functions often deal with highly technical, specialized, and complex information and processes. However, the goals and KPIs of IT and cybersecurity are not only unaligned, they are often in direct conflict. The internal clients for IT are other business functions that essentially pay for the various technology assets (applications, servers, cloud instances, etc.) required to keep the enterprise running. IT performance is evaluated by how seamlessly, continuously, and cheaply they are able to deliver their services. IT doesn’t really have visibility into or an understanding of how these assets are being used by the business, what kind of data they process, which critical business functions they support.


When cybersecurity comes to IT and tells them that a particular technology asset or part of the IT infrastructure has problems or weaknesses that could be exploited by malicious actors, they have to weigh the benefits — stopping a potential attack that may or may not happen vs. the costs — resources allocated to fix the problem, unhappy internal clients due to technology assets being unavailable during fixing, valuable time spent fixing and validating the issue. This is a hard sell and essentially amounts to self-regulation. A significant percentage of breaches exploit known vulnerabilities and weaknesses within an organization. Looked at from this lens, it’s not difficult to see how such problems can go unaddressed.


The modern school of thought recognizes cybersecurity as its own independent vertical within the enterprise — like sales, marketing, HR, or any other function that helps the business function and thrive. In this model, cybersecurity has various business functions as its internal clients, and the CISO might have a seat at the C-level table. Cybersecurity informs business stakeholders of the risks they face as a result of the technology infrastructure they utilize. The business stakeholders provide the context necessary for informed risk triage and collaborate with cybersecurity to identify which vulnerabilities or weaknesses pose the biggest threats to the part of business they own. These prioritized risks are then sent to IT for remediation. Cybersecurity provides guidance to IT on how they may remediate or mitigate a particular problem. Since risk remediation or mitigation is being driven by the business stakeholders, IT is incentivized to fix these problems.


Risk-based cybersecurity is a methodology for program design that can help organizations put this modern approach into practice. By putting an emphasis on incorporating business context in the risk analysis process and data models, and by ensuring that business stakeholders are involved in the decision chain, risk-based cybersecurity programs provide a shared space where IT, business, and cybersecurity can come together and collaborate.

Recent Posts
November 22, 2022
A primer on the types of cybersecurity vulnerabilities organizations face

Vulnerabilities are everywhere in the cyber systems on which enterprises rely for, well, everything. The need for an effective vulnerability risk service has never been higher. The number of cybersecurity vulnerabilities grows along with the number of cyber systems and users, significantly increasing the attack surfaces of corporate network infrastructures. Organizations need a vulnerability risk service that connects, models and analyzes all relevant security, context and threat data to deliver knowledge-driven insights for vulnerability prioritization, remediation and reporting. Here’s why. A vulnerability is "a weakness in the computational logic found in software and hardware components that when exploited, results in a negative effect to confidentiality, integrity, or availability,” according to the National Vulnerability Database (NVD). NVD and Microsoft security updates are two free sources for vulnerability definitions. For more definitions, you can also pay for subscriptions to vulnerability databases available from cybersecurity vendors.  There are two types of vulnerabilities: known and unknown. Let’s take a look at each one. Known vulnerabilities If you know about a vulnerability’s existence, you can defend it — at least theoretically. The following are known vulnerabilities present in many corporate infrastructures.  Familiarity When an attacker is familiar with the code, software, operating systems and hardware of an organization, the chances are high that the attacker will find a vulnerability.  Complexity The more complex a system is, the higher the probability a flaw or misconfiguration will result in unintended access. Connectivity ‍The more connections a device has, the greater the chance a vulnerability exists among them. Poor password management Computers do the grunt work necessary for a brute-force attack, hurling password combinations at the speed of digits, hoping to uncover weakness. When users reuse passwords, a single breach can become many breaches, as the attacker tries the same password on different systems and platforms. Software flaws When an operating system is not secured, an attacker can access it to inject viruses and malware. ‍Sometimes programmers unintentionally leave exploitable bugs in software. Users leave their systems vulnerable by not updating or patching their software. Antivirus vulnerabilities The irony of antimalware solutions is situational – instead of protecting users from malware,  antimalware solutions expose users to vulnerability exploitation. Antimalware grants extensive permissions an attacker can abuse to access a system. Users ‍People who use computers are easily the most significant and weakest link in the entire security chain. According to the 2022 Verizon Data Breach Investigations Report:  80% of data breaches are from poor or reused passwords.  82% of breaches involved credentials. 82% of breaches involved a human element. 7% of breaches involved vulnerability exploitation. If not for users, phishing wouldn’t exist. Nor would social engineering. The former is an email message sent in the hope the recipient will click on an included link set to deliver a malware payload. The latter is a lie or deception used to enter a network for a cyberattack.  Physical cybersecurity threats When planning the protection of a network, it’s easy to forget about the physical security of IT assets, such as your buildings and infrastructure. Also, consider users’ security and privacy in cyber-physical systems. They can be bribed or intimidated into relinquishing valuable information.   Denial of service (DoS) A denial-of-service (DoS) attack is a malicious attempt to prevent legitimate traffic from accessing a website by overwhelming the web server with meaningless requests.  Application security testing (AST) Application security testing (AST) is the process of identifying security weaknesses and vulnerabilities in source code to harden applications by making them more resistant to security threats. According to Gartner research, “84% of breaches exploit vulnerabilities in the application layer, yet the ratio of spending between perimeter security and application security is 23-to-1.” If you’re aware of an application vulnerability, you can test for it.  Dynamic application security testing (DAST)  Dynamic application security testing (DAST) tools execute code and then inspect it at runtime to detect issues that might be security vulnerabilities. Issues may be with query strings, requests, responses, scripts, memory leaks, cookie handling, session handling, authentication, executing third-party components, and code and data injection. Static application security testing (SAST) Static application security testing (SAST) scans application source, binary, and byte code to identify vulnerability causes and assist with remediation. SAST tools attack applications from inside to perform a scan, inspecting static source code and reporting weaknesses. Interactive application security testing (IAST) Interactive application security testing (IAST) analyzes code for security vulnerabilities while the application is running. That can be an automated test, a human tester, or anything “interacting” with application functionality. Because it reports vulnerabilities in real time, IAST doesn’t add more time to your improvement and deliverability. Web application security testing Web application security testing involves assessing a web application for security flaws and vulnerabilities that require fixing before hackers take advantage of them. Meticulously testing for hidden vulnerable points in your application lessens the risk an attacker will find and exploit one of them. The Verizon 2022 Data Breach Investigations Report mentioned above found that 56% of breaches involved basic web application attacks. Software composition analysis (SCA) Software composition analysis (SCA) identifies specific open-source versions, software components, and licensing risks. It helps to ensure all embedded open-source code meets selected standards.  Advanced SCA tools have automated component detection and identification, as well as vulnerability, license association, and risk remediation. Unknown vulnerabilities When a home full of intelligent devices suffers more than 12,000 hacking or unknown scanning attacks from around the world in one week, can you imagine how many more risks to a network there are? Since your network is more extensive — and more valuable — than the technology of the average home, it presents a more significant target.   Zero-day A software flaw hackers have discovered while the developer remains unaware of it is known as a zero-day vulnerability. It’s called “zero-day” because it had never been seen before and the software vendor had “zero” time to patch it before criminals exploited it.  Trust relationship Trust configurations propagated across your network simplify user access between systems. Adverse possession of those trusted credentials opens the systems to attackers. After gaining access to a system, the adversary can breach all other systems that trust the system that was initially compromised. Compromised credentials  To get unauthorized access to a system in your network, attackers try to intercept and extract passwords from unencrypted or incorrectly encrypted communication, either from unsecured handling by software or users. Attackers also try to exploit passwords by reusing them across systems. Malicious insider Potentially the most dangerous security bad actors and the one motivated to do serious damage is the stealthy insider: a disgruntled team member with access to your critical systems. They may choose to exploit their access privileges to steal or destroy your data.  How do you find unknown vulnerabilities?  Penetration testing Penetration testing, or pen testing, is an exercise in which a cybersecurity professional probes a network to find and exploit vulnerabilities. Simulated attacks are how a pen tester identifies weak spots in system defenses that defenders can fix to tighten security. Pen testing is an intricate, specialized practice area that is critical to business security.  Breach and attack simulation (BAS) To perform comprehensive assessments of your cybersecurity defenses, you need automated breach simulation and attack simulation, continuous assets scanning, and protection. Breach and attack simulation (BAS) spots gaps in your security and helps you understand how well-defended you are against real threats to your systems. A BAS platform mimics the actual actions of a threat by simulated attacks against your data center, allowing you to assess your security controls and take action designed to catch a real threat actor when the need arises.  Often offered as software-as-a-service (SaaS), BAS goes beyond traditional testing methods such as penetration testing and vulnerability scans by simplifying how you conduct checks on your security controls. Modern BAS tools permit automated testing including customized, automated, simulated attacks. Unlike traditional penetration tests in which humans perform hacking attempts, cloud-based BAS apps host modules that run automated tests. The malware used doesn’t harm your network infrastructure and works only for the simulation. Brinqa performs vulnerability risk management Using connectors to pull data from all sources on your entire network, Brinqa calculates rules, performs advanced operational risk analysis, and applies specific business contexts to pinpoint those vulnerabilities you must fix first. It automatically creates tickets and tasks for remediation.  The capability for extensive visibility into all of your existing assets, information and infrastructure is practically infinite, meaning you can add more data and grow your network without worry.  Get your free trial to experience how easily Brinqa delivers efficient, repeatable and trustworthy results by automating your vulnerability risk management. FAQ  How do a vulnerability, a threat and a risk differ? Sometimes confused with vulnerability, a threat is anything capable of exploiting a vulnerability, whereas a risk is when a threat exploits a vulnerability. You worry about a threat occurring to an asset. You calculate the potential damage from a risk. What is a threat agent in information security? The National Institute for Standards and Technology defines a threat agent synonymously with a threat source as, “The intent and method targeted at the intentional exploitation of a vulnerability or a situation and method that may accidentally trigger a vulnerability.” What are the reasons why information systems are vulnerable? Being interconnected and accessible from many points in the connection makes information systems vulnerable.  What are cyber-physical systems? The Cyber-Physical Systems Research Center tells us cyber-­physical systems (CPS) happen when digital and analog devices, interfaces, sensors, networks, actuators and computers are combined with the natural environment and with human-made objects and structures. A CPS depends upon integrating computational algorithms and physical components.  What is cyber-physical security? Cyber-physical security concerns securing physical systems used to maintain and implement cybersecurity solutions. It includes the technology necessary for operations, industrial control systems, and the Internet of Things. The proliferation of devices has led to physical and cybersecurity convergence.

November 18, 2022
Types of Application Security Testing: Definitions and Differences

Aggregating the findings of AST tools delivers a holistic, app-centric approach to security It may be cliche, but almost every company today is an application development company. And the increasing number of security breaches and sophisticated threats are driving the application security testing (AST) market. Compliance regulations, the move to remote work, and the need to protect critical customer and company data also are compelling organizations to adopt AST. Software sellers have realized that building AST into their applications is a best practice because prevention is almost always better — and less expensive — than finding vulnerabilities in the wild after applications are deployed. Application security testing AST is the key to identifying security weaknesses and vulnerabilities in source code. It hardens applications by making them more resistant to security threats. AST was initially performed manually, but the expanding amount of software, open-source components, and the increasing number of known vulnerabilities have driven the need to automate AST. Most organizations that use AST also combine it with a few key application security tools. Application risk management is a vital component of software security, especially since Gartner research found that vulnerabilities in the application layer are responsible for 84% of breaches. Dynamic application security testing A dynamic application security testing (DAST) scan executes code and then performs a dynamic code analysis to detect possible security vulnerabilities. Those vulnerabilities occur in query strings, requests, responses, scripts, memory leaks, cookie handling, session handling, authentication, executing third-party components, and code and data injection. DAST assessments attack applications from outside, which enables the detection of more vulnerabilities and the testing of more applications. You can use DAST tools to conduct scans that simulate many unexpected malicious test cases and then you'll receive a report showing how the application responded. While DAST automation reduces the need to manually check for security risks and perform lengthy scans, it does lack actionable advice for developers. A dynamic code analysis scan must be completed using other security measures and tools. Static application security testing (SAST) Static application security testing (SAST) is a security tool developers use to conduct code scanning on application code early in the DevOps process. SAST scans application source, binary, and byte code to identify vulnerability causes and assist with remediation. The application need not be running for SAST to analyze the code. SAST tools attack applications from the inside, inspecting static source code to report security weaknesses. SAST tools do not require an operating system. By providing immediate feedback about potential code issues to developers during development, SAST reduces security risks in applications. It helps educate developers about security while they work. Real-time recommendations and line-of-code navigation lead to faster discovery of vulnerabilities and auditing collaboration. Developers can create more code with fewer vulnerabilities, which results in a more secure application. The differences between SAST and DAST DAST cannot see into code, which is why developers must use SAST to pinpoint the areas where those problems occur. On the other hand, running SAST in a static environment can only uncover runtime security vulnerabilities. That makes it practical for only a portion of the job. Because DAST scanners find vulnerabilities late in the software development cycle, the issues it finds are time-consuming and cost more to fix than if they’d been discovered earlier. Interactive application security testing (IAST) Interactive application security testing (IAST) examines code for security vulnerabilities at runtime. Anything “interacting” with application functionality, such as a human tester or automated test, may be interactive testing. IAST does not slow your improvement and deliverability, because it reports vulnerabilities in real time. IAST differs from static analysis (SAST) and dynamic analysis (DAST) by working within an application through the code. It detects and reports issues while the application is running. It doesn’t test the entire application or codebase, only what the functional test uses. Web application security testing (WAST) Web application testing (WAST) lets developers assess a web application for security flaws and vulnerabilities and fix them before hackers can take advantage of them. There is less risk that an attacker will find and exploit a hidden vulnerable point after rigorously testing the security of a website. Mobile application security testing (MAST) Mobile application security testing (MAST) examines a mobile application similar to the way a malicious user attacks it. Start by understanding the purpose of the application and the type(s) of data it deals with. Then perform static and dynamic analyses and penetration testing to arrive at an assessment, which finds vulnerabilities that otherwise would have been missed had those tools not been used together. The biggest issue with mobile applications is most are developed with little thought about security until the shipping date, at which point bare minimum security gets tacked on. Runtime application self-protection (RASP) Runtime application self-protection (RASP) sits within your application and protects it against known and zero-day vulnerabilities in your code, without signatures. RASP resides on a server, where it detects attacks against applications in real time. It intercepts all application calls to the system, ensures the calls are secure, and validates data requests directly within the application. When an application runs, RASP protects it from maliciousness by analyzing app behavior and its behavioral context. By continuously monitoring its own behavior, RASP identifies and mitigates attacks immediately — without human intervention. Since RASP detection and protection features run on the server, it doesn’t affect the design of the application being tested. RASP can protect both web and non-web apps, finding unknown payloads, obfuscated and context-dependent attacks, and zero-day threats. Software composition analysis (SCA) Software composition analysis (SCA) distinguishes licensing risks, particular open-source versions, and software component security. SCA helps ensure all open-source code meets necessary standards. Advanced SCA tools offer automated component detection and identification, as well as vulnerability, license association, and risk remediation. How Brinqa helps your AST Brinqa is the main dashboard for cyber risk management across your IT environment. Brinqa helps you get more out of your security by: Connecting all DevOps and AppSec tools into a single program that normalizes data from various systems and processes into a formalized solution to address the unique application security needs of your organization. Classifying and cataloging all your software assets and tracking how each affects your business. Improving efficiency and consistency by automating risk analysis of your development, security and operations processes. Delivering security reports and recommendations designed to make software development more manageable and secure, which your developers will eagerly anticipate. Modeling risk data and automating ticketing for remediation. Providing security training and education to your employees and developers with Brinqa risk insights, to help avoid risks before they enter your network. Dynamic application security development enables you to add risk factors and security testing results anywhere along the software development lifecycle, from planning, through development and testing, to release. Get your free trial and see how easily Brinqa delivers effective, consistent and reliable results. FAQs What are the web application security testing steps? The steps for web application security testing are: Establish the scope by determining what applications, network systems, and code you will test; how you will test them; and what you expect to deliver. The most comprehensive results come from testing as a typical user, an untrusted outsider, and a user with full application privileges. Choose the appropriate testing tools to deliver the results you seek. For example, source code analysis, web applications, and user permissions require different testing tools. Scan for vulnerabilities by sorting the tests into groups to ease the testing process. Validate your vulnerability scanner findings by approaching your application with an attacker mindset and imagining all the damage an attacker can do to your application. Document and disseminate your findings by assembling your data into a report you can provide to others. What is the difference between software testing vs. security testing? Software testing is evaluating and verifying that a software application works as intended. Testing also helps prevent software bugs, reduce development costs, and improve performance. Security testing is software testing intended to find all possible system vulnerabilities and protect data and resources. It also ensures that the software systems and applications are free from risks and threats. What is the difference between DAST vs. penetration testing? You can run DAST during development, allowing developers, testers, or security teams to gather results before software release and fix vulnerabilities sooner and, therefore, less expensively. You can perform penetration testing only after you’ve completed development. Pen testing reveals highly possible attack scenarios, but little coverage of code. What does "exploitable" mean? Exploitable in cybersecurity means anything that can be exploited for selfish or unethical reasons, especially commercially. Attackers seek exploitable vulnerabilities, meaning those with both an exploit method and a path that allows exploiting. What is penetration testing in a production environment? Penetration testing in a production environment enables testing the entire solution and granting an accurate picture of what happens during operation. It also provides a view into which assets are most attractive to an attacker and measures when the security tools you implemented detect the attacks. How vital is front-end web security? Front-end web security is as vital as backend code security. The entrance to your website is open to the world and is complex, completes more, and is consequently more potent than it used to be. Increased complexity and performance expand the number of attack surfaces. What are front-end security best practices? Front-end security best practices begin with a good security policy. Make security part of the development process by using a framework that automatically considers it. For example, you can reduce browser feature access and prevent clickjacking attacks by disabling iframe embedding. You also need to be judicious when adding third-party services. What is a DAST screening tool? DAST tools execute code and then inspect it at runtime to detect possible security vulnerabilities. What is dynamic security training? Dynamic security training is a hands-on approach to educating and informing people on cybersecurity risks and threats that require entire team member engagement. Dynamic security training gives users an idea about hazards they might encounter, how to handle them, and how in the future to mitigate those risks.

November 9, 2022
CVE-2022-42889 Text4Shell

On 2022-10-13, the Apache Security Team disclosed a critical vulnerability with CVE-2022-42889 affecting the popular Apache Commons Text library. This vulnerability is popularly named “Text4Shell” which when exploited can allow an unauthenticated attacker to execute arbitrary code on the vulnerable asset. A CVSSv3 score of 9.8/10 is assigned to this vulnerability. Apache Common Text versions 1.5 through 1.9 are impacted by this vulnerability and have been patched with Apache Commons Text version 1.10 and above. Apache Commons Text is a widely popular low-level library for performing various text operations, such as escaping, calculating string differences, and substituting placeholders in the text with values looked up through interpolators. When using the string substitution feature, some of the available interpolators can trigger network access or code execution. This is intended, but it also means an application that includes user input in the string passed to the substitution without properly sanitizing it would allow an attacker to trigger those interpolators. Brinqa Response: Brinqa does include the affected versions in parts of its application, but we do not use untrusted strings as input and we are not vulnerable based on the information we have at this time. We are updating the affected version to 1.10 where this library is used. Affected products: Brinqa 5.x Brinqa 10.x More updates to come as we get further information. If you have any questions or concerns, please contact us at security@brinqa.com.